5 data analytics questions production experts raise

Now that we’ve covered the initial questions that production experts usually raise in early discussions, today I want to delve deeper into more technological aspects of data analytics in a manufacturing environment.

Learn more in our analytics workshop

1. In what cases does data analytics help leverage savings better than more traditional engineering and statistical methods?

Looking at the work habits (e.g. problem solving) and common tools (Excel, Six Sigma, etc.) of the majority of engineers and technicians today, the approach to optimization projects is most often one-dimensional. In the case of end-of-line scrap, for instance, test data is analyzed. This gives you the effect, but not the cause that improvement measures should be targeting, such as certain failure codes or failed test steps.

By using data mining techniques, you can consider test data (containing the information on which parts passed the tests and which failed) in conjunction with the respective process and quality data for the final product and for components. Add machine data, traceability data, environmental data, etc. into the mix, and search for correlations to obtain new insights.

Specific algorithms aid in identifying multidimensional cause-effect relationships – e.g. end-of-line scrap rate increases with a certain failure mode – consisting of: component A from supplier B, press-in force close to lower limit, and machine X shortly before next planned maintenance.

Having the right tools on hand to apply these algorithms, as well as the IT infrastructure and computing power to perform multivariate analyses within a reasonable amount of time, are basic enablers for this advanced analytics approach.

2. How do you convince experts to invest more in systems that help capture data so that analytics will eventually help?

The answer might surprise you: we try not to convince experts to invest in more data. In fact, we usually go the other way, and start with what you have. The amount of data is just one factor – usually the one that provides a satisfactory answer. Don’t overestimate how much data you need.

Instead, quality and stability of sources, data quality in general, and validity are other very important factors that you need to focus on.

Beyond that, it is essential for the analytics partner team to understand your business problem and the technical process involved in your production (step) to correctly apply analytics and interpret findings. The question “Has any machine, procedure, etc. been changed in the past two months?” is one that has made a difference many times, so instead of simply collecting more data, invest in educating your analytics partner as regards the business and technical process.

One more thing is important to prevent investing in data collection rather than in problem solving: don’t put your trust in analytics projects that will take months before you see initial results. You are the only expert on your production process! Go iterative and discuss results with your analytics partner’s data, IT, and manufacturing experts in short phases that take just days or at most a few weeks. This is your best investment in an analytics project that is aimed at solving your problem.

3. When do you calculate business cases and ROI for improvement projects? At the start or at a certain point of maturity?

The correct answer is: both! Of course our analytics team discusses the ROI mechanisms with the customer at the beginning of a project, i.e. the business understanding phase. They want to make sure they will be working on a promising business case – e.g. the status quo and expected target state of scrap rate or unplanned downtime for a certain machine.

As soon as we start working with the data and learning more about its potential, we quickly identify whether this supports the initially defined ROI. This is reevaluated throughout the entire project and discussed in regular feedback sessions with the customer. This iterative customer-oriented approach is helpful in managing expectations on both sides.

To keep project risks low, we usually act in short, iterative project phases of just a few days each. At the end of each phase, we meet with the customer to discuss and decide whether and how to move into the next one. This has proven to be a very successful method for meeting our customers’ expectations at all times.

4. How do you find the right algorithm for each case?

To find the right approach – i.e. analytics strategy, technologies, and algorithms – for an individual customer problem, it is essential to understand both the customer’s business case and the physical problem behind it. The physical problem might be certain failure causes that lead to machine breakdowns. In this case, experienced data scientists can pre-select some potentially feasible algorithms for solving the customer’s problem. The final decision is then made based on a model evaluation of the pre-selected algorithms – e.g. showing how accurate each algorithm’s or model’s predictions are.

On-site training and consulting for engineers in the production plants are important in helping them to understand the basic principles of data analytics and evaluate the quality of the models applied to your infrastructure and process.

5. Do you perform an acceptance test for an analytics model? 

At the beginning of an analytics project, we work with the customer to define the objectives with regard to prediction accuracy, latency, etc., and establish a clear understanding of the business case and the technical and physical background of the customer problem.

These objectives are applied when it comes to evaluating the latest results and obtaining project acceptance.

After a prediction model is deployed in the customer IT environment or product (e.g. server, SPS/PLC, microcontroller of a chain saw), continuous “acceptance tests” (we call this model monitoring) are required in order to ensure that the model is constantly predicting within the defined accuracy limits. If those limits are exceeded, the model has to be retrained (i.e. the model parameters have to be readjusted).

The target prediction accuracy depends largely on the use case and the risk associated with inaccurate predictions – 90% or more is often realistic. In general, however, it’s important to realize that, from a statistical point of view, 100% accuracy can never be achieved, and depending on the production quantity, even 0.1% wrongly classified NOK parts is unacceptable. At this point we usually talk with production and quality engineers about how to catch these 0.1% misclassified parts through other measures in the quality firewall (e.g. based on existing process and product FMEA).

Did you find these insights helpful? Get started with analytics in your factory with the help of our manufacturing analytics engineer!

Learn more in our analytics workshop

personas_72dpi

 

 

About the author

Marc Schnadinger

Marc Schnadinger

Marc Schnadinger has been working as a Senior Expert Manufacturing within the Product Group Industry & Logistics at Bosch Software Innovations since September 2014. In 2015, he assumed the additional position of team leader Data Analytics. Since joining Bosch in 2006, he has held a number of different positions within the manufacturing environment. These positions include manufacturing, process development and special machine building in a production facility as well as manufacturing coordination on a business unit level.